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SUMMARY 
Three numerical examples of singular flows in two and three dimensions computed with the vortex method 
are presented. The effect of the cut-off parameter is investigated and special techniques are added to the 
classical vortex method to diminish the numerical instabilities present in the examples. 
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1. INTRODUCTION 

Many interesting numerical experiments have been carried out over the past decade in which two- 
and three-dimensional incompressible flows are calculated by vortex point methods. In these 
methods the initial vorticity distribution is discretized by a finite number of points or blobs 
corresponding to a uniform mesh. The motion of these points is described by computing their 
interaction” according to the Biot-Savart law. In a recent work on three-dimensional flows3 it 
has been pointed out that perturbations induced by computer round-off errors lead to an irregular 
motion of these points and to the development of widely unstable modes. These phenomena have 
also been observed by Krasny4 when studying Kelvin-Helmholtz instabilities. The conclusion of 
Krasny’s work can be summarized as follows. The Kelvin-Helmholtz problem is ill-posed but a 
smooth solution can be computed by particular techniques. The goal of such techniques is to 
avoid perturbations due to round-off error. Herein lies the main difference from the present work 
since we do not try to remove such perturbations. We try instead to evaluate if they are equivalent 
to physical perturbations arising in real flows. The problem to be considered here is to find out 
whether the evolution of these perturbations follows a physical rather than a numerical path. This 
paper reports on some computational experiments which were performed in order to study this 
problem. We consider three types of flow: evolution of a random vorticity distribution, the 
Kelvin-Helmholtz problem and three-dimensional vortex ring flow. 
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2. VORTEX METHOD 

Let u(x, t)  be the velocity field and o=curl(u) the vorticity field. The vorticity transport equation 
is given by 

(1) 
aw -+ ( u  * V)w + (0 V)u = 0, 
at  

u=K*w, (2) 
where K is the curl of the Green kernel in the whole space (R2 or R3). A particle of fluid located at 
x=x(t)  moves with the fluid and the vorticity o(x(t), t)  is stretched according to the following 
equations: 

dx 
-=u(x(t), dt t), 

dw 
- = [Vu] * 0. 
dt  

(3) 

(4) 

Then the vortex method consists simply of approximating equations (3) and (4) by representing the 
vorticity distribution as a linear combination of Dirac measures: 

oh= 1 i aiS(x-xi). 

Looking at the discretized form of equation (2), it is obvious that this kind of description gives rise 
to singular flows and thus the kernel K must be smoothed.' The simplest smoothing results from a 
regularization of the velocity: K is replaced by K ,  = K* c,, where l, = E-"[(x/E) ( n  = 2 or 3) and is 
a convenient smoothing function. If we denote by xi(t) the location of particle i and by a i ( t )  the 
weight of particle i, then the approximate vorticity and velocity are given by 

uh(x, t)= K,(x -xi)( t))ai( t). 
i 

Finally we obtain a system of differential equations for the particle locations and weights by 
approximating equation (3) and (4): 

For more details see References 1 and 2. 

3. 2-D CASE 

Non-smooth flow 

reconsidered from the specific point of view of the present paper. 
This section is devoted to an example already published in Reference 5. The example is 
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In the 2D case the vorticity is a scalar and there is no stretching. Thus equation (4) reduces to 

dw 
- = O ,  
d t  

the discretized form of which is 
d a k  -=O.  
d t  

This equation implies that the weight of the particle is constant. Then the method reduces to the 
approximation of equation (3) only. The convergence has been proved for o E L’ n L”.’ 

The first case we consider is the time evolution of an initial vorticity distribution which is highly 
oscillating without any typical length scale. For this purpose we choose a uniform distribution of 
particles in a square, together with a random initialization of the weights a,. Regularization of the 
velocity smooths the flow and introduces a characteristic length scale E (E represents the domain of 
interaction of a particle). It might be assumed that a small value of this parameter would give rise 
to an accurate representation of all the length scale greater than E (restricted by the number of 
discretization points). However, this is not the case (except for small time, depending on E )  because 
the algorithm is not stable (either from a theoretical or a numerical point of view’). We must 
increase the value of this parameter and the numerical solution then represents some mean flow 
which is not an accurate representation of the exact solution. In order to improve the accuracy of 
the algorithm, a special technique has been proposed by Beale.6 The effect of this technique has 
been explored in References 6 and 7 and it is natural to try to use it here. It consists of modifying 
the weights of the particles in order to obtain correct values of the vorticity at the particle 
locations. This is done by solving the following system at each time step: 

a i = h 2  1 Y k c a ( X i - X k ) ,  (7) 
k 

where h is the particle path and ( x k )  are the particle locations at the time considered. 

use an iterative method to solve it: 
Since is an approximation of identity, the linear system (7) is well-conditioned. Thus we can 

k 

The coefficients (yk) obtained after n iterations are used to compute the velocity: 

uh = 1 K,( x - x i ) ? : .  
i 

(9) 

This method works well in the case of smooth flows with only a few iterations,6*’ but in the 
present situation it does not. We think that the reason for this is that the vorticity is not conserved 

i k 

Also, it is possible to construct a conservative form of this algorithm with a simple modification: 

7; =ai  + h2 c ( y ; -  1 - y;  - I)[,( x i  - x k ) .  (10) 
k 

This new formulation is found to be equivalent to the introduction of artificial viscosity,’ and 
equation (10) can be interpreted as an anti-diffusive process which enhances the numerical 
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instability of small scales. Therefore it is possible to use a similar form in order to obtain an 
artificial diffusion algorithm which will damp the instability: 

7; = ai + (I C (YE-' - 7;- l)Ce(xi - x k ) ,  
k 

with (I negative. 
In Figure 1 we present a comparison of the entropy computed with the classical scheme 

(constant weights) and with the present diffusive and anti-diffusive techniques. We first see that 
with the classical scheme the entropy grows. As expected, the effect of the artificial diffusion is to 
smooth the vorticity so that the computed solution represents the mean flow. In this case the 
algorithm is stable. In contrast, with anti-diffusion we do not represent the mean flow and the 
entropy increases with time. 

We may emphasize a distinction between smoothing, which acts on the velocity fields, and 
diffusion (or anti-diffusion), which affects the vorticity fields. 

In Figure 2 we present the same computation but with a smooth initial vorticity field. The 
differences between the three different cases are not really significant. It can be concluded that the 
correction acts on scales that are small compared with the parameter E. 
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Figure 1.  Illustration of the different schemes ( E  =0.2): (a) constant weight; (b) anti-diffusive scheme; (c) numerical viscosity 
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numerical v iscos i ty  model constant weight I I 

Figure 2. Effect of the different schemes in the case of smooth flow 

Kelvin-Helmholtz instabilities 

The second test involves Kelvin-Helmholtz instabilities. It has been shown4 that perturbations 
induced by computer round off errors lead to irregular motion. A computation will be realistic if 
this effect is balanced. This source of errors can be controlled by the use of a high-precision 
machine or a filtering te~hnique.~ 

A vortex sheet in 2D can be represented by a function z = z ( r ,  t ) ,  where t is the time, z is the 
space variable and r is a Lagrangian parameter which measures the circulation. We introduce two 
perturbations of different wavelengths: z = r + ap(T) + o1 p(r/ll), where p is a periodic function of 
period 1. Then the regularized velocity U = ( u ,  o) can be written 

-sinh [2n(y-y’)] 
d r ’ ,  

cash [27t(y-y’)] - C O S ~  (27t(~ - x’)] + E’ 

sin [2s(x-x’)] .=‘S dr‘ .  

In Figure 3 we present a classical roll-up of a vortex sheet (a=0.01, ol =0) similar to those 
presented in Krasny’s work. We observe a spiral with a finite number of turns; the number of turns 
of the computed solution depends on E.  

In the case where two modes are present it will be interesting to see if the evolution of these 
modes is perturbed by computer round-off errors. We see in Figureqa) that the highest one 
develops more rapidly, in agreement with stability analysis. Moreover, the sheet cannot be 
decomposed into two independent curves. This shows that the two modes interact through non- 
linear effects. This can be also seen in Figure 4(b) where we have plotted the amplitudes of the 
Fourier coefficients of the sheet for a high-precision machine and with a filtering technique 
(a = 0.01, a1 = O.OOO1, I, = 0.01). In this case the initial condition has non-zero Fourier coefficients 
for modes k = 5 1, f 100, but round-off error3 are present in both cases. The effect of the filter is 

2 cash [27t(y-y’)]-cosh [27t(~-x’)]+~’ 
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Figure 3. Classical roll-up of a vortex sheet at time 1.1 (u=OOl, u, =0) 
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Figure 4. (a) Point positions at time 0.4 for the case of two modes (~=0.05, a=0.01, u, =O.OOOl, I ,  =0.1). (b) Log-linear 
plots of the amplitudes of the Fourier coefficients (~=0.05, u=0.01, u1 =OoOOl, I ,  =0*01) for a high-precision machine 

(curve 1) and with a filtering technique (curve 2) 
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not to suppress the growth of the Fourier modes but to damp the noise due to round-off errors. We 
observe that, at later time, when the amplitude of a mode has jumped above the filter level, it 
follows, the evolution of the unfiltered one. Moreover, the same new modes appear in both cases. 
We can conclude then that perturbations induced by computer round-off do not seem to perturb 
the evolution of the dominant modes and that filtering does not prevents the appearance of new 
modes through non-linear effects. 

Another way to control the spurious growth of short-wavelength modes is to adjust the 
parameter E. If we decrease it, small-wavelength perturbations develop, resulting in a large error in 
the computed curve (Figure 5(a)). This is also clear in Figure 5(b) where the amplitudes of the 
Fourier coefficients are plotted. The differences observed are rather important. If we increase E, 

then the flow is smooth. The spectrum remains smooth and decays in amplitude until the round- 
off error is reached. Except for a small time, the spectrum obtained for the smallest value of E is 
jagged and contains many modes which have no physical significance. This suggests that the 
regularization parameter induces drastic modification of the original flow. 

4. VORTEX RING PROBLEM 

We now consider the problem of the flow induced by a vorticity distribution initially concentrated 
in a ring. This is a three-dimensional flow for which the vortex methods presented previously have 
to be extended to account for the stretching term of the Helmholtz equation (1). Two types of 
method have been developed for this purpose: the vortex filament method' and the vortex point 
m e t h ~ d . ~  The main difference between the two methods is that in the first Kelvin's theorem is 
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Figure 5. (a) Point positions at time 6 4  for different values of E (u=O*Ol, u1 = O G 3 M ,  I ,  =0.1). (b) Log-linear plots of the 
amplitudes of the Fourier coefficients (u=O.Ol, u ,  =O.oOOl, I ,  =0.1) for different values of E: 0.1 (curve l), 005 (curve 2), 

0.025 (curve 3) 
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automatically satisfied whereas in the second this theorem is satisfied in an approximate way by 
integrating the Helmholtz equation. However, we find an advantage in using the vortex point 
method for this kind of description which remains valid even if the vorticity support has a very 
complicated shape. Thus in the present work we use the Rehbach method.' We recall that the 
discretized equations are 

The technique used to discretize the stretching equation (4) is simply a direct derivation of the 
Biot-Savart law in order to compute the velocity gradient. Then the regularization must be one 
order better than in the two-dimensional case since this relation includes a one-order-higher 
singularity. 

Another technique can be used to obtain an approximate equation for the stretching. In the 
continuous problem we have o - (Vu)  = w - ( VTu), where superscript T denotes transposition. 
Then, in the discretization of equation (4) we can use any combination of the velocity gradient and 
the transposed velocity gradient: 

o * ( v u ) = o - [ (1 - a) VT u + a V u ] .  

Thus we have the new scheme 

An important feature of this new algorithm is the use of the transposed velocity gradient. It has 
been pointed out by Choquin and Cottet" that the direct formulation (a= 1) does not conserve 
the total vorticity whereas the discrete equation in which the stretching is expressed only in terms 
of the transposed velocity gradient (a =0) is conservative. 

In the original work of Rehbach, two values of a, namely a =  1 and a=O.5, were used, and the 
latter was found to have better numerical properties. It will be a goal of our numerical test to 
determine the effect of this value on the stability of the computed solution. 

In our calculation we choose the initial vorticity to fit the steady solution of Norbury." We use 
a set of 320 particles comprised of 80 sections containing four particles each. 

We first try to compute the Norbury steady solution in order to study the effect of the 
regularization parameter E and the parameter a. We observe that for a = 1 (direct formulation) no 
solution can be obtained for a long time (Figure 6(a)). It is possible to adapt the computation by 
increasing the smoothing parameter E (Figure 6(b)) as in the previous section it is found that a 
large value of this parameter enables the computation to be carried for a longer time. However, the 
perturbations due to round-off error, whose early development can be assumed to be physically 
consistent, stimulate some numerical instabilities associated with the stretching term discretiz- 
ation. This appears clearly if we compute the global angular momentum, which should be zero. 
We can observe in Figure 6(c) that it grows rapidly even when E is increased. This can be explained 
by two different reasons. 

The first is related to the results of the linear stability analysis of the vortex ring." It is found 
that the more unstable modes are those of short wave number. This is the case in our calculations 
where the breakdown of the vortex ring always occurs between the first and last initialized 
sections. We can conjecture that it is a result of $he accumulation of round-off errors. 
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(a) (b) 

Figure 8. (a) Point positions at time 1.1 for ~=0.065, a = O 5  (b) Point positions at time 1.1 for ~=0.065, a=O 

Figure 9. Point positions at time 1.1 with a radial perturbation for ~=0.065, a = l  

The second is related to the particle discretization. In the stability analysis, Kelvin's theorem 
implies that the motion of a ring element and the stretching of the vorticity corresponding to this 
element are coupled. In the particle method these two aspects of the ring evolution are computed 
independently and thus have different evolutions. The result is that Kelvin's theorem is not 
automatically satisfied and this leads to numerical instability, at least for the case a = 1. This seems 
to be confirmed by the fact that no such problem has been encountered by Ghoniem et who 
compute similar flows using vortex filament discretization. 

If now we use the formulation proposed by Rehbach (a = 0.5) or Choquin and Cottet (a =O), we 
see in Figure 7 that the growth of the angular momentum is not as marked. Moreover, for the last 
case (a =0) the vorticity is conserved. Figure 8 shows that the vortex ring does not break down, 
although the same kind of instability associated with the initial discretization can be observed. 

Another way to damp the numerical instability is to superimpose on the initial condition a small 
radial perturbation. This perturbation affects the evolution of the smaller-wavelength perturba- 
tions and allows the computation to be carried out for a longer time. A result of this kind is 
presented on Figure 9. 
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5. CONCLUSIONS 

In this work we have tried to analyse some computational experiments on interactions between 
numerical and physical instabilities. In two dimensions it is pointed out that the choice of a 
smoothing technique will allow computation of the flow for a long time. In three dimensions the 
additional difficulty associated with vortex stretching has partially been overcome by using a new 
approximation of this term. The question remains in 3D of knowing whether the computed 
solution corresponds to a physical rather than a numerical evolution of the perturbations induced 
by round-off errors. 
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